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Abstract

In this study\ the transient response of a _nite crack subjected to an incident horizontally polarized shear
wave and then propagated with a constant speed in an unbounded elastic solid is investigated[ Initially\ the
_nite crack with crack length l is stress!free and at rest[ At time t�9\ an incident horizontally polarized
shear wave strikes at one of the crack tips and will arrive at the other tip at a later time[ Then\ two crack
tips propagate along the crack tip line with di}erent velocities as the corresponding stress intensity factors
reach their fracture toughness[ The correspondent con_guration is shown in Fig[ 0[ In analyzing this problem\
di}racted waves generated by two propagating crack tips must be taken into account and it makes the
analysis extremely di.cult[ In order to solve this problem\ the transform formula in the Laplace transform
domain between moving and stationary coordinates is _rst established[ Complete solutions are determined
by superposition of proposed fundamental solutions in the Laplace transform domain[ The fundamental
solutions to be used are from the problems of applying exponentially distributed traction and screw
dislocation on crack faces and along the crack tip line\ respectively[ The exact transient solutions of dynamic
stress intensity factor for the _rst few di}racted waves that arrive at two crack tips are obtained and expressed
in compact formulations[ Numerical calculations of dynamic stress intensity factors for both tips are
evaluated and the results are discussed in detail[ Þ 0888 Elsevier Science Ltd[ All rights reserved[

0[ Introduction

Recently\ the transient response of a solid medium containing a crack!like ~aw under dynamic
loads has received much attention[ Scattering of elastic waves by cracks has attracted attention
over the years for its importance towards the nondestructive evaluation of cracked bodies and the
dynamic fracture analysis of materials[ The interaction of a stress wave with a crack is a complicated
problem and the analysis is mainly restricted to relatively simple problems[ Most of the work\
however\ has been directed towards the solution of problems with a semi!in_nite crack subjected
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Fig[ 0[ Con_guration and coordinate systems of a _nite crack in an unbounded medium[

to distributed impact loading on crack faces[ The complete solutions mentioned above can be
obtained by integral transform methods in conjunction with direct application of the WienerÐ
Hopf technique "Noble\ 0847# and the CagniardÐde Hoop method "de Hoop\ 0847# of Laplace
inversion[ If the cracked problem having a characteristic length or loading condition is unsym!
metrical\ then the usual procedure using integral transform methods does not apply[

The stress intensity factors of a stationary _nite crack upon di}raction of a time!harmonic wave
have been obtained by Loeber and Sih "0857# and Sih and Loeber "0857\ 0858#[ If integral
transforms are applied to solve the transient response of a _nite crack subjected to dynamic loading\
a relationship among sectionally analytic function will be obtained which is more complicated than
the form of the standard WienerÐHopf equations[ The generalized WienerÐHopf equation can be
solved iteratively to obtain the complete transient solution\ and only the _rst step in the iteration
process has been carried out[ Thau and Lu "0860#\ following the work of Kostrov "0853# and
Flitman "0852#\ treated the analogous transient problem of di}raction of an arbitrary plane
dilatational wave by a stationary _nite crack and a stationary _nite rigid ribbon in an in_nite
elastic solid from the iteration process[ Their results are exact only at the time interval that the
dilatational wave has traveled the length of the crack twice[ Sih and Embley "0861# have studied
the near tip solution of a stationary _nite crack under transient in!plane loading[ They reduced
the mixed boundary value problem to a standard Fredholm integral equation and subsequently
inverted the Laplace transform of the stress components by a combination of numerical means
and an application of the Cagniard inversion technique[ A class of problems involving interaction
between a stationary _nite crack and other boundaries was considered by Chen "0866\ 0867# and
Itou "0879\ 0870#[ With the exception of Loeber and Sih who considered the time!harmonic
incident wave\ all of the authors mentioned have simpli_ed their problems by assuming sym!
metrically distributed loading conditions\ and _nally used a numerical Laplace inversion technique
to obtain the solutions in the physical domain[ Because of the mathematical di.culties\ the closed
form analytical solution for the problem of a _nite crack subjected to transient waves is very rare[

The problem of an unbounded medium containing a stationary semi!in_nite crack subjected to
a pair of concentrated inplane loadings on the crack faces has been investigated by Freund "0863#[
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A straightforward application of the WienerÐHopf method is not successful and the transient
solution of stress intensity factor was obtained by Freund "0863# by an indirect approach based
on the superposition of moving dislocations[ He proposed a fundamental solution arising from an
edge dislocation climbing along the line ahead of the crack tip with a constant speed to overcome
the di.culties of the case with a characteristic length[ The solution can be constructed by taking
an integration over a climbing dislocation of di}erent moving velocity[ Basing his procedure on
this method\ Brock "0871\ 0873#\ Brock et al[ "0874#\ and Ma and Hou "0889\ 0880# have analyzed
a series of problems of a semi!in_nite crack subjected to impact loading on crack faces[ A thorough
summary of the application of main direct methods of analysis for transient problems in dynamic
fracture for elastic or inelastic problems has been given by Freund "0889#[ Freund "0889# has
suggested an alternate approach based on the aforementioned moving dislocation solution to
examine the same _nite!crack problem that had been solved by Thau and Lu "0860#[ In practice\
however\ the alternate approach provided a solution that is valid for the same time range as before[

Kostrov "0855# and Achenback "0869a\ b# have used the method based on Green|s function to
solve the problems of crack propagation for anti!plane deformation[ In their studies\ the region of
integration for the integral equation is in a complicated shape\ generally being bounded by a
hyperbola and a number of straight lines[ For points ahead of the crack tip\the region of integration
reduces to a triangular region and the stress in the plane of the crack can thus be determined
without di.culty[ However\ for material points not on the crack tip line\ the region of integration
is very complicated and careful analysis is needed[ Scattering of plane harmonic waves by a running
crack of _nite length was investigated by Chen and Sih "0864#[ They found the dynamic stress
intensity factors and crack opening displacements of the _nite crack[ Exact transient closed form
solutions for a stationary semi!in_nite crack subjected to a suddenly applied dynamic body force
in an unbounded medium have been obtained by Tsai and Ma "0881# for the in!plane case and by
Ma and Chen "0882# for the anti!plane case[ They determined the transient full _eld solutions by
superimposing a fundamental solution in the Laplace transform domain[ The fundamental solution
used in the problem is an exponentially distributed traction in the Laplace transform domain on
the crack faces[ This fundamental solution has also successfully been applied to solve the problems
of a half plane containing a semi!in_nite inclined crack by Tsai and Ma "0882# and Ma and Chen
"0883# for in!plane and anti!plane problems respectively[ Brock "0864# has studied the transient
response for di}raction of an incident horizontally polarized shear wave by a stationary _nite
crack[ His results indicated that the peak dynamic stress intensity factors could occur after the
arrival of the second wave\ which means that secondary di}ractions may produce even higher
peaks than the earlier peaking[ Ing and Ma "0886# also investigated the same problem solved by
Brock "0864# for the long time behavior by using superposition of new fundamental solutions in
the Laplace transform domain[ Their results\ however\ indicate that the maximum dynamic stress
intensity factor in the transient period always occurs at the instance that the second wave arrives
at the right or the left crack tip[

In this study\ the transient response of a _nite crack subjected to an incident plane horizontally
polarized shear wave and then propagates after some delay time\ is investigated[ The geometrical
con_guration is shown in Fig[ 0[ If the stress intensity factor of the stationary crack tip is greater
than the fracture toughness of the material\ then it is assumed that the crack tip will start to
propagate along the crack tip line with a constant velocity[ Both tips\ however\ can propagate with
di}erent velocities[ The propagation of crack with _nite length can simulate dynamic fracture
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problem more realistically[ In analyzing this problem\ the waves di}racted between two stationary
"and propagating# crack tips will make the analysis extremely di.cult[ It is impossible to solve
this complicated problem by direct application of the standard WienerÐHopf technique and some
other approach must be followed[ Two useful fundamental problems are proposed and used to
overcome these di.culties[ The proposed fundamental problems\ which form a key element in the
analysis\ are solved exactly by the WienerÐHopf method[ The proposed fundamental problems are
the problems of applying exponentially distributed traction and screw dislocation on crack faces
and along the crack tip line\ respectively[ The _rst few waves di}racted by the stationary and
propagating crack tips are constructed by superposition of the proposed fundamental solutions[
Since the stress intensity factor is the key parameter in characterizing dynamic crack growth\ we
will focus our attention mainly on the determination of the dynamic stress intensity factor[

1[ Proposed fundamental problems and fundamental solutions

Two alternative fundamental problems will be proposed and solved in this section which can
then be used to construct the solution for the problem of a _nite crack subjected to plane polarized
shear waves[ The solutions of an exponentially distributed traction applied at the propagating
crack faces and exponentially distributed screw dislocations generated along the crack tip line in
the Laplace transform domain will be referred to as the fundamental solutions[ The di}racted
waves scattered from the crack tips can be constructed by superimposing the proposed fundamental
solutions in the Laplace transform domain[

Consider a fundamental problem of anti!plane deformation for a semi!in_nite crack propagating
in an unbound medium[ The crack propagates along the crack line with a constant velocity n which
is less than the shear wave speed of the material[ In analyzing this problem\ it is convenient to
express the governing equation of wave motion in the moving coordinates j−y as follows

"0−b1v1#
11w
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1y1
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where w is the out!of plane displacement\ and b is the slowness of the shear wave given by

b �
0
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r

m
[

Here cs is the shear wave speed\ m and r are the respective shear modulus and the mass density of
the material[ The coordinate j de_ned by j � x−nt is _xed with respect to the moving crack tip[
The nonvanishing shear stresses are

tyz � m
1w
1y

\ txz � m
1w
1x

[ "1#

1[0[ Fundamental solution of distributed loads on crack faces

We consider _rst that exponentially distributed tractions in the Laplace transformation domain
are applied on the upper and lower crack faces of a propagating semi!in_nite crack[ Because the
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tractions are equal but opposite on the two crack faces\ the problem can be viewed as a half!plane
problem with the material occupying the region y − 9\ and subjected to the following mixed
boundary conditions in the Laplace transform domain

t¹yz"j\ 9\s# � eshj for −� ³ j ³ 9\ "2#

w¹ "j\ 9\s# � 9 for 9 ³ j ³ �[ "3#

The Laplace transform parameter s is taken as a positive number and h is a constant[ The overbar
symbol is used for denoting the transform on time t[ This fundamental problem can be solved by
the application of the standard integral transform method[ Applying the one!sided Laplace trans!
form over time\ the two!sided Laplace transform over j under the restriction of Re"h# × Re"l#\
_nally the WienerÐHopf technique is implemented[ The solutions of stresses and displacement in
the Laplace transform domain\ for the boundary conditions "2# and "3#\ can be expressed as
follows

t¹yz"j\ y\ s# �
0

1pig
a�¦"l#e−s"a�y−lj#

a�¦"h#"h−l#
dl\ "4#

t¹xz"j\ y\ s# �
0

1pig
−le−s"a�y−lj#

a�−"l#"h−l#a�¦"h#
dl\ "5#

w¹ "j\ y\ s# �
0

1pig
−e−s"a�y−lj#

msa�−"l#"h−l#a�¦"h#
dl\ "6#

where

a�"l# � a�¦"l#a�−"l# � zb¦l"0−bn#zb¦l"0¦bn#[ "7#

To ensure Re"a�# − 9 everywhere in the l!plane\ branch cuts are introduced from b:"0¦bn# to �\
and −b:"0−bn# to −�[ The corresponding result of the dynamic stress intensity factor expressed
in the Laplace transform domain is

K¹ "s# � lim
j:9

t¹yz"j\ 9\ s# �
−z1"0−bn#

zsa�¦"h#
[ "8#

1[1[ Fundamental solution of screw dislocation distributed alon` the crack tip line

Consider a semi!in_nite crack contained in an unbounded medium[ A distributed screw dis!
location ahead of the crack tip line yields the following boundary conditions in the Laplace
transform domain

w¹ "j\ 9\s# � eshj for 9 ³ j ³ �\ "09#

t¹yz"j\ 9\s# � 9 for −� ³ j ³ 9[ "00#

The particular problem posed can be solved by means of the WienerÐHopf method[ The solutions
of stresses and the displacement expressed in the Laplace transform domain are
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t¹yz"j\ y\s# �
0

1pi g
msa�−"h#a�¦"l#e−s"a�y−lj#

h−l
dl\ "01#

t¹xz"j\ y\s# �
0

1pi g
−msla�−"h#e−s"a�y−lj#

a�−"l#"h−l#
dl\ "02#

w¹ "j\ y\s# �
0

1pi g
−a�−"h#e−s"a�y−lj#

a�−"l#"h−l#
dl\ "03#

The corresponding result of stress intensity factor expressed in the Laplace transform domain is

K¹ "s# � −mz1s"0−bn#a�−"h#[ "04#

2[ Coordinate transformation relations in the Laplace transform domain

The superposition method can be applied successfully only if the fundamental solutions and the
integral function of superposition are described in the same coordinate system[ If they are not
de_ned in the same coordinate system\ they have to transform into the same one[ Consider two
moving coordinate systems "j\ y# and "j?\ y# whose extending velocities are nA and nB\ respectively\
i[e[ j � x−nAt and j? � x−nBt[ If a function described in the "j\ y# coordinate system is represented
in the Laplace transform domain as

Q¹ "j\ y\ s# � snesagF"l#e−sa�A "l#y¦sljdl\ "05#

where n is an arbitrary integer\ and

a�A"l# � a�A¦"l#a�A−"l# � zb¦l"0−bnA#zb−l"0¦bnA#[

Then it can be transformed into the "j?\ y# coordinate system with the following form

Q¹ "j?\ y\ s# � −sn esaÐð0−l"nA−nB#Łn−0F 0
−l

0−l"nA−nB#1 e−sa�B "l#y¦slðj−a"nA−nB#Ł dl\ "06#

in which

a�B"l# � a�B¦"l#a�B−"l# � zb¦l"0−bnB#zb−l"0¦bnB#[

The transformation relations described in eqns "05# and "06# can be proved if one inverses these
two equations to time domain[

3[ Dynamic stress intensity factors of two propagating crack tips

The evaluation of the stress intensity factor for a cracked body is a well!established concept in
fracture mechanics\ and it represents the cornerstone of linear elastic fracture mechanics[ We will
focus our attentions in this study mainly on the evaluation of the dynamic stress intensity factor[
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A speci_c geometry to be considered here is an in_nite medium containing a _nite crack of
length l as shown in Fig[ 0[ The origins of two stationary coordinate systems "x\ y# and "x?\ y?# are
located at crack tips A and B\ respectively[ At time t � 9\ an incident horizontally polarized shear
wave arrives at the crack tip A\ and then\ two crack tips will propagate along the crack tip line
with di}erent velocities as the corresponding stress intensity factors reach its fracture toughness[
The incident plane wave with an incident angle g is represented by the general form

wi"x\ y\ t# � F"t¦bx cos g−by sin g#\ "07#

where

F"t# � H"t#g
t

9

f "t# dt\ "08#

in which F is identically zero when its argument is negative\ but is otherwise an arbitrary wave
form[ Thus\ the medium ahead of the incident plane wave front is undisturbed[ In eqn "08#\ H" #
denotes the Heaviside step function and g is the angle of the negative x!axis and the normal of the
wavefront[ The position of the wavefront for time t ³ 9 is also shown in Fig[ 0[ Here the angle g

is restricted to the range 9 ³ g ¾ p:1[
At time t � 9\ the incident plane wavefront strikes the crack tip A and will generate plane

re~ected and cylindrical di}racted waves[ Some time later\ i[e[\ t � bl cos g\ the incident plane wave
will arrive at the crack tip B and another di}racted wave will be induced[ It is assumed that each
crack tip will propagate along the crack tip line if the dynamic stress intensity factor of the tip
reaches its fracture toughness Kc[ The di}racted waves induced from one crack tip will propagate
toward the other crack tip at a later time\ and it makes the problem more di.cult to solve because
many waves will be generated from both tips[ An e}ective superposition scheme will be proposed
in this study to solve this complicated problem[

The incident horizontally polarized shear wave expressed in eqn "07# will give rise to the following
shear stress in the in_nite medium]

ti
yz"x\ y\ t# � −mb sin gf "t¦bx cos g−by sin g#H "t¦bx cos g−by sin g#[ "19#

Consider an incident step!stress wave for which

f "t# �
t9

mb
[ "10#

Then the incident stress _led eqn "19# can be represented in the Laplace transform domain as

t¹i
yz"x\ y\ s# �

0
1pigGl

t9 sin g

s"l−b cos g#
e−sly tan g¦slx dl\ "11#

or expressed in the "x?\ y?# coordinate system as

t¹i
y?z?"x?\ y?\ s# �

0
1pigGl

t9 sin g

s"l−b cos g#
esly? tan g¦sl"x?¦l# dl[ "12#

Before the incident stress wave di}racted from the crack tip B\ the stress _eld is precisely the same
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as that derived for a stationary semi!in_nite crack lies in the plane y � 9 and −� ³ x ³ 9\ and is
struck by the same incident plane wave[ The incident stress _eld t¹i

yz"x\ 9\ s# at y � 9 generated by
the step!stress shear wave is

t¹i
yz"x\ 9\ s# �

0
1pi gGl

t9 sin g

s"l−b cos g#
eslx dl[ "13#

The applied traction on the crack face\ in order to eliminate the incident wave as indicated in eqn
"13#\ has the functional form eslx[ Since the solutions of applying traction eshx on stationary crack
faces have been solved in Section 1 by setting n � 9\ the re~ected and di}racted _elds can be
constructed by superimposing the incident wave traction that is equal and opposite to eqn "13#[
When we combine eqns "6# and "13# "by setting n � 9#\ the solution of displacement w¹ A0d for A0d
wave "the _rst wave di}racted from the stationary crack tip A# in the upper plane can be expressed
in the Laplace transform domain as follows

w¹ A0d"x\ y\ s# �
−0
1pi gGh0

t9 sin g

s"h0−b cos g#
0

1pi gGh1

−e−say¦sh1x

msa¦"h0#"h0−h1#a "h1#
dh1dh0

�
z1t9 sin"g:1#

mzbs1

0
1pi gGl

e−say¦slx

a "l#"l−b cos g#
dl[ "14#

The corresponding stress intensity factor expressed in the Laplace transform domain is

K¹ A0d"s# �
−0
1pi gGl

t9 sin g

s"l−b cos g#6
−z1

zsa¦"l#7 dl

�
−1t9 sin"g:1#

s2:1zb
[ "15#

By using the CagniardÐde Hoop method of Laplace inversion\ the dynamic stress intensity factor
at the crack tip A induced by the incident wave expressed in time domain will be

KA0d"t# � −3t9X
t

pb
sin"g:1#H"t# "16#

Equation "16# is a well known solution of a stationary semi!in_nite crack subjected to an incident
plane wave[ After some delay time tAf \ the dynamic stress intensity factor of tip A may reach its
fracture toughness Kc\ and the tip will begin to propagate[ The delay time tAf can be determined
from eqn "16# as follows

b−3t9X
tAf
pb

sin"g:1#b� Kc\

so
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tAf � pb0
Kc

3t9 sin"g:1#1
1

[ "17#

In this study\ it is assumed that the incident plane shear wave will always cause the crack tip A
to propagate along the crack tip line[ Consequently\ the fracture toughness Kc must be less than
the maximum amplitude of dynamic stress intensity factor of tip A\ i[e[\ Kc ¾ KA

max"t#[ However\
it was also known from Ing and Ma "0886# that the stress intensity factor of tip A will arrive at its
maximum amplitude at time t � bl"0¦cosg#[ So\ we have the condition that

Kc ¾ =KA0d
max "t# = � 1t9X

1l
p

sin g[ "18#

At time t � tAf \ the dynamic stress intensity factor of crack tip A reaches its critical value and this
tip starts to propagate with a constant velocity nA[ The incident wave written in the Laplace
transform domain for the moving coordinate system "j\ y# will have the following form

t¹i
yz"j\ y\ s# �

0
1pi gGl

t9 sin g"0¦bnA cos g#
sð"0¦bnA cos g#l−b cos gŁ

e−sly tan g¦sl"j−nAtAf # dl\ "29#

where j � x−nA"t−tAf #[ The applied traction on crack faces as expressed in eqn "29#\ has the
functional form eslj[ The di}racted _eld generated from the propagating crack tip A can be
constructed by superimposing the fundamental solution and the stress distribution in eqn "29#[
The result of displacement expressed in the Laplace transform domain will be

w¹ A0n"j\ y\ s#�
−0
1pi gGh0

t9 sin g"0¦bnA cos g# e−sh0nAtAf

sð"0¦bnA cos g#h0−b cos gŁ
0

1pigGh1

−e−sa�Ay¦sh1j

msa�A¦"h0#"h0−h1#a�A−"h1#
dh1 dh0

�
z1t9 sin"g:1#"0¦bnA cos g#2:1

mzbs1

0
1pi gGl

e−sa�Ay¦slj

a�A−"l#ð0¦bnA cos g#l−b cos gŁ
dl[

"20#

The dynamic stress intensity factor for a propagating crack in an in_nite medium can also be
constructed by a similar manner[ The result in the Laplace transform domain can be obtained
from eqns "09# and "29# and is expressed as follows

K¹ A0n"s# �
−0
1pi gGh0

t9 sin g"0¦bnA cos g#e−slnAtAf

sð"0¦bnA cos g#l−b cos gŁ 6
−z1"0−bnA#

zsa�A¦"l# 7 dl

� −
z1t9 sin"g:1#z0¦bnA cos g#"0−bnA#

zbs2:1
e−sbnAtAf cos g:0¦bnA cos g[ "21#

The inversion Laplace transform of eqn "21# will have the following form

KA0n"t# �
−3t9 sin"g:1#z"0¦bnA cos g#"0−bnA#

zpb Xt−
bnAtAf cos g

0¦bnA cos g
H"t−tAf #[ "22#
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The Heaviside step function in eqn "22# results from the e}ect that KA0n"t# is valid only for time
t × tAf [ The dynamic stress intensity factor expressed in eqn "22# is a well!known solution for a
propagating semi!in_nite crack subjected to an incident step!stress wave[ The analogous solution
has also been found by Ma and Burgers "0875# using a di}erent method[

Subsequently\ the incident plane wave will propagate toward the crack tip B and will be di}racted
at time t � blcosg[ Following the similar procedure that is used for constructing the A0d wave\ the
B0d wave "the _rst wave di}racted from the stationary crack tip B# can be constructed in the
coordinate system "x?\ y?# by using eqns "12# and "6# "by setting n � 9# as follows

w¹ B0d"x?\ y?\ s# �
−0
1pi gGh0

t9 sin gesh0l

s"h0¦b cos g#
0

1pi gGh1

−e−say?¦sh1x?

msa¦"h0#"h0−h1#a "h1#
dh1dh0

�
z1t9 cos"g:1# e−sbl cos g

mzbs1

−0
1pi gGl

e−say?¦slx?

a "l#"l¦b cos g#
dl[ "23#

The corresponding stress intensity factor at the crack tip B induced by the incident plane wave is

K¹ B0d"s# �
1zbt9 cos"g:1#e−sbl cos g

s2:1zb
[ "24#

The dynamic stress intensity factor at the crack tip B expressed in time domain will be

KB0d"t# � 3t9X
t−bl cos g

pb
cos"g:1#H"t−bl cos g#[ "25#

The results expressed in eqns "16# and "25# are well!known solutions of dynamic stress intensity
factor for the _rst two di}ractions of a step!stress wave by a stationary _nite crack in an unbounded
medium[ The same solutions have also been obtained by Achenbach "0869a# and Ing and Ma
"0886# using di}erent methods[

Similarly\ after some delay time tBf \ the crack tip B begins to propagate with a constant velocity
nB as the dynamic stress intensity factor exceeds its fracture toughness Kc[ It is assumed in this
study that the crack tip B starts to propagate before the A0d wave arrived the tip\ i[e[\
bl × tBf × bl cos g[ The delay time tBf can be obtained from eqn "25# as follows

3t9X
tBf −bl cos g

pb
cos"g:1# � Kc

and we have

tBf � pb0
Kc

3t9 cos"g:1#1
1

¦bl cos g[ "26#

Notice that the fracture toughness Kc must be less than KB0d
max "t#\ so we have

Kc ¾ =KB0d
max "t# = � 1t9X

1l
p

sin g[ "27#
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The result in eqn "27# is the same as that in eqn "18#[ Consequently\ from eqns "18# and "27#\ we
can obtain the maximum fracture toughness that allows both crack tips to propagate as follows

Kc\max � 1t9X
1l
p

sin g[ "28#

Following the same procedure\ we represent the incident _eld in the moving coordinate system "j?\
y?# as

t¹i
y?z?"j?\ y?\ s# �

0
1pi gGl

t9 sin g"0−bnB cos g#
sð"0−bnB cos g#l¦b cos gŁ

esly? tan g¦sl"j?−nBtBf ¦l#dl\ "39#

where j? � x?−nB"t−tBf #[ The displacement _eld and the stress intensity factor KB0n"t# after the tip
B starts to propagate can be obtained from eqns "39#\ "6# and "8#\ and the _nal results are

w¹ B0n"j?\ y?\ s# �
z1t9 cos"g:1#"0−bnB cos g#2:1

mzbs1
esb cos g"nBtBf −l#:0−bnB cos g

×
−0
1pi gGl

e−sa�By?¦slj?

a�B−"l# ð"0−bnB cos g#l¦b cos gŁ
dl[ "30#

KB0n"t# �
3t9 cos"g:1#z"0−bnB cos g""0−bnB#

zpb Xt−
b cos g"l−nBt

B
f #

0−bnB cos g
H"t−tBf #[ "31#

When the di}racted B0d or the B0n wave arrives at the right tip of the _nite crack at a later time\
it carries a discontinuous displacement in the z!direction which violates the boundary condition
for j × 9[ In order to satisfy the boundary condition where the displacement must be continuous
for j × 9\ a distributed screw dislocation is required to close the opening displacement ahead of
the propagating crack tip[ The di}racted A1d and A1n waves will be induced when the B0d and
B0n waves arrive at the moving crack tip A\ respectively[ We change the formulation in eqns "23#
and "30# to "j\ y# coordinate system by using the transformation relations established in Section
2\ then the displacements we must eliminate ahead of the propagating tip A are

w¹ B0d"j\ 9\ s# �
0

1pi gGl

z1t9 cos"g:1#e−sbl cos gesl"j−nAtAf ¦l¦nAbl cos g#

mzbs1"0−lnr#2"0−l0nB#2:1a�B−"l0# ð"0−bnB cos g#l0¦b cos gŁ
dl\

"32#

w¹ B0n"j\ 9\ s# �
0

1pi gGl

z1t9 cos"g:1#"0−bnB cos g#2:1e−stBesl"j−nAtAf −nBtBf ¦l¦nrtB#

mzbs1"0−lnr#2a�B−"l0# ð"0−bnB cos g#l0¦b cos gŁ
dl\ "33#

where nr � nA¦nB is the relative velocity between two moving coordinate systems and

l0 �
l

0−lnr

\ tB �
b cos g"l−nBt

B
f #

0−bnB cos g
[

Again we treat the crack as a propagating semi!in_nite crack which lies along the line y � 9\
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−� ³ j ³ 9[ The di}racted A1d and A1n waves generated from the propagating crack tip A can
be obtained by superimposing the distributed dislocation that equal and opposite to eqns "32# and
"33# ahead of the tip j × 9 in the Laplace transform domain\ respectively[ Here we only analyze
the corresponding stress intensity factors by using eqns "32#\ "33#\ and "04# as follows

K¹ A1d"s# �
−0
1pi gGl

z1t9 cos"g:1#e−sbl cos g esl"l−nAtAf ¦nAbl cos g#

mzbs1"0−lnr#2"0−l0nB#2:1a�B−"l0# ð"0−bnB cos#gl0¦b cos gŁ

"−mz1s"0−bvA#a�A−"l## dl

�
−0
1pi gGl

1t9 cos"g:1#z0−bnA e−sbl cos ga�A−"l# esl"l−nAtAf ¦nAbl cos g#

zbs2:1"0−lnA#2:1a�A¦"l#ð"0¦bnA cos g#l−b cos gŁ
dl\ "34#

K¹ A1n"s# �
−0
1pi gGl

1t9 cos"g:1#z0−bnA"0−bnB cos g#2:1 e−stBa�A−"l# esl"l−nAtAf −nBtBf ¦nrtB#

zbs2:1"0−lnr#2:1a�A¦"l0#ð"0¦bnA cos g#l−b cos gŁ
"35#

Inversion of the Laplace transform of eqn "34# yields

KA1d"t# �
3t9 cos"g:1#z0−bnA

p2:1zb g
t−bl cos g

b"l−nAtAf ¦nAbl cos g#

0−bnA

×
zt−t−bl cos g zt¦bðl¦nA"t¦bl cos g−tAf #Ł

ðl¦nA"t¦bl cos g−tAf #Ł2:1

×
ðl¦nA"bl cos g−tAf #Ł2:1

"t¦b cos gðl¦nA"t¦bl cos g−tAf #Ł# zt−bðl¦nA"t¦bl cos g−tAf #Ł

×dtH"t−tA1d#\ "36#

where tA1d is the arrival time of the B0d wave at the crack tip A and it can be expressed as

tA1d �
b"l−nAtAf ¦nAbl cos g#

0−bnA

¦bl cos g �
bl cos g¦b"l−nAtAf #

0−bnA

[ "37#

The inverse Laplace transform of eqn "35# is

KA1n"t# �
3t9 cos"g:1#z0−bnA"0−bnB cos g#2:1

p2:1zb g
t−tB

b"l−nAtAf −nBtBf ¦nrtB

0−bnA

×
zt−t−tB

"l−nAtAf −nBt
B
f ¦nrtB¦nrt#2:1

×
z"0¦bnA#t¦b"l−nAtAf −nBt

B
f ¦nrtB#

ðt¦b cos g"l¦nAt−nAtAf −nBt
B
f ¦nrtB#Ł

×
"l−nAtAf −nBt

B
f ¦nrtB#2:1

z"0−bnA#t−b"l−nAtAf −nBt
B
f ¦nrtB#

dtH"t−tA1n#\ "38#
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where tA1n is the arrival time of the B0n wave at the propagating crack tip A and it can be obtained
as

tA1n �
b"l−nAtAf #¦tBf

0−bnA

[ "49#

In addition\ eqn "38# is valid only for l−nAtAf −nbt
B
f × 9[ But this is adaptable for most propagating

speed except for the high speed cases "nA:cs : 0\ nB:cs : 0#[
Similarly\ the B1d and the B1n di}racted waves scattering from the crack tip B will be induced

after the A0d and the A0n waves passed the tip[ We change eqns "14# and "20# to "j?\ y?# coordinate
system by using the transformation relations\ and the displacement _elds along the crack tip line
in the Laplace transform domain will be

w¹ A0d"j?\ 9\ s# �
−0
1pigGl

z1t9 sin"g:1#esl"j?−nBtBf ¦l#

mzbs1"0−lnr#2"0−l0nA#2:1a�A−"l0# ð"0¦bnAcosg#l0−b cos gŁ
dl\

"40#

w¹ A0n"j?\ 9\ s# �
−0
1pi gGl

z1t9 sin"g:1#"0¦bnA cos g#2:1 e−stA esl"j?−nAtAf −nBtBf ¦l¦nrtA#

mzbs1"0−lnr#2a�A−"l0#ð"0¦bnA cos g#l0−b cos gŁ
dl\ "41#

where

tA �
bnAtAf cos g

0¦bnA cos g
[ "42#

Using the fundamental solution in eqn "04#\ the stress intensity factors corresponding to the B1d
and the B1n waves can be obtained as follows

K¹ B1d"s# �
0

1pigGl

1t9 sin"g:1#z0−bnBa�B−"l#esl"l−nBtBf #

zbs2:1"0−lnB#2:1a�B¦"l# ð"0−bnBcosg#l¦b cos gŁ
dl\ "43#

K¹ B1n"s# �
0

1pi gGl

1t9 sin"g:1#z0−bnB"0¦bnA cos g#2:1 e−stAa�B−"l# esl"l−nAtAf −nBtBf ¦nrtA#

zbs2:1"0−lnr#2:1a�B¦"l0#ð"0−bnB cos g#l¦b cos gŁ
dl[

"44#

Applying the inverse Laplace transform to eqns "43# and "44#\ the dynamic stress intensity factors
in time domain are

KB1d"t# �
−3t9 sin"g:1#z0−bnB

p2:1zb g
t

b"l−nBtBf #

0−bnB

zt−tzt¦bðl¦nB"t−tbf #Ł

ðl¦nB"t−tBf #Ł2:1

×
"l−nBt

B
f #2:1

"t−b cos gðl¦nB"t−tBf #Ł#zt−bðl¦nB"t−tBf #Ł
dtH"t−tB1d#\ "45#
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Fig[ 1[ Wave fronts of the incident and di}racted waves for a short time period[

KB1n"t# �
−3t9 sin"g:1#z0−bnB"0¦bnA cos g#2:1

p2:1zb g
t−tA

b"l−nAtAf −nBtBf ¦nrtA#

0−bnB

zt−t−tA
"l−nAtAf −nBt

B
f ¦nrtA¦nrt#2:1

×
z"0¦bnB#t¦b"l−nAtAf −nBt

B
f ¦nrtA#

ðt−b cos g"l¦nBt−nAtAf −nBt
B
f ¦nrtA#Ł

×
"l−nAtAf −nBt

B
f ¦nrtB#2:1

z"0−bnB#t−b"l−nAtAf −nBt
B
f ¦nrtA#

dtH"t−tB1n#\ "46#

where tB1d and tB1n are the arrival times of the A0d and the A0n waves\ respectively\ and

tB1d �
b"l−nBt

B
f #

0−bnB

\ "47#

tB1n �
b"l−nBt

B
f #¦tAf

0−bnB

[ "48#

4[ Numerical results

In the previous section\ the transient solutions of dynamic stress intensity factors for the _rst
few di}ractions of a horizontally polarized shear wave by a propagating _nite crack have been
derived[ The induced wave fronts of incident and di}racted waves in a short time period are shown
in Fig[ 1[ Figures 2 and 3 show the dimensionless stress intensity factors KA:Kc and KB:Kc versus
the dimensionless time t:bl for di}erent values of the incident angle g at crack tips A and B\
respectively[ It indicates in Fig[ 2 that the dynamic stress intensity factors at crack tip A will
increase as the incident angles increase[ However\ the stress intensity factors at crack tip B
increase as the incident angles decrease after the _rst four waves passed the tip[ That is\ the dynamic
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Fig[ 2[ The dynamic stress intensity factor KA:Kc for di}erent values of the incident angle g[

Fig[ 3[ The dynamic stress intensity factor KB:Kc for di}erent values of the incident angle g[

stress intensity factor at crack tip B is much greater than that at crack tip A for the same incident
angle[

Figure 4 shows the dimensionless stress intensity factors KA:Kc and KB:Kc versus the dimen!
sionless time t:bl for di}erent values of fracture toughness[ It can be seen that the ratios for KA:Kc
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Fig[ 4[ The dynamic stress intensity factor for di}erent values of fracture toughness[

Fig[ 5[ The dynamic stress intensity factor KA:Kc for various crack propagating velocities[

and KB:Kc both increase rapidly for smaller Kc after the crack begins to propagate[ It means that
for larger Kc\ the crack may stop propagating after it has propagated for a period of time[
Moreover\ Fig[ 4 also indicates that the dynamic stress intensity factor at crack tip B is larger than
that at crack tip A for the same value of fracture toughness[ Figures 5 and 6 show the dimensionless
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Fig[ 6[ The dynamic stress intensity factor KB:Kc for various crack propagating velocities[

stress intensity factors KA:Kc and KB:Kc versus the dimensionless time t:bl for di}erent crack
propagating velocities\ respectively[ It shows that the in~uence of secondary di}raction on dynamic
stress intensity factor for higher velocity is relatively smaller than that for lower velocity[

5[ Conclusions

Most of the problems that have been studied in the development of fracture mechanics are
quasi!static[ Numerous problems have existed for which the assumption that the deformation is
quasi!static is invalid and the inertia of the material must be taken into account[ Because of the
di.culties in mathematical complexity\ analytical solutions for an elastic solid containing a _nite
crack subjected to dynamic loading are very rare[ In conventional studies of a semi!in_nite crack
in an unbounded medium subjected to dynamic loading\ the complete solution can be obtained by
applying direct integral transform methods[ If a cracked body having a characteristic length or the
loading condition is unsymmetrical\ then the same procedure can not be applied directly[ In this
investigation\ we propose a powerful superposition methodology\ which is performed in the
Laplace transform domain\ and successfully applied to solve the transient response of a _nite crack
propagating in an unbounded medium[ The _nite crack is stuck by a horizontally polarized shear
wave[ After some delay time\ two stationary crack tips will start to propagate along the crack tip
line with constant velocity as the stress intensity factor reaches its fracture toughness[ Two useful
fundamental solutions and the coordinate transformation relations are proposed to solve this
problem[ The _rst few waves di}racted by the stationary and propagating crack tips are obtained
and expressed in very compact formulations[
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It is interesting to note that the dynamic stress intensity factor during crack propagation of
crack tip B is larger than that of crack tip A\ which is the tip that the incident plane wave _rst
strikes[ It means that after crack starts to propagate\ crack tip A is easier to arrest than crack tip
B[ Furthermore\ it also indicates in this study that the in~uence of secondary di}racted waves on
dynamic stress intensity factor for higher propagation velocity is relatively smaller than for lower
velocity[
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